

django-freeradius

[image: _images/django-freeradius.svg]
 [https://travis-ci.org/openwisp/django-freeradius][image: _images/badge.svg]
 [https://coveralls.io/r/openwisp/django-freeradius][image: Requirements Status]
 [https://requires.io/github/openwisp/django-freeradius/requirements/?branch=master][image: _images/django-freeradius1.svg]
 [http://badge.fury.io/py/django-freeradius]Django-freeradius is part of the OpenWISP project [http://openwisp.org].

[image: _images/openwisp.org.svg]
 [http://openwisp.org]
Contents:

	Setup
	Create a virtual environment

	Install required system packages

	Install stable version from pypi

	Install development version

	Setup (integrate in an existing django project)

	Migrating an existing freeradius database

	Installing for development

	Troubleshooting

	Automating management commands

	Available settings
	DJANGO_FREERADIUS_EDITABLE_ACCOUNTING

	DJANGO_FREERADIUS_EDITABLE_POSTAUTH

	DJANGO_FREERADIUS_GROUPCHECK_ADMIN

	DJANGO_FREERADIUS_GROUPREPLY_ADMIN

	DJANGO_FREERADIUS_USERGROUP_ADMIN

	DJANGO_FREERADIUS_DEFAULT_SECRET_FORMAT

	DJANGO_FREERADIUS_DISABLED_SECRET_FORMATS

	DJANGO_FREERADIUS_RADCHECK_SECRET_VALIDATORS

	DJANGO_FREERADIUS_BATCH_DEFAULT_PASSWORD_LENGTH

	DJANGO_FREERADIUS_BATCH_DELETE_EXPIRED

	DJANGO_FREERADIUS_BATCH_PDF_TEMPLATE

	DJANGO_FREERADIUS_API_TOKEN

	DJANGO_FREERADIUS_DISPOSABLE_RADIUS_USER_TOKEN

	DJANGO_FREERADIUS_API_AUTHORIZE_REJECT

	DJANGO_FREERADIUS_API_ACCOUNTING_AUTO_GROUP

	DJANGO_FREERADIUS_EXTRA_NAS_TYPES

	Sending emails to users
	DJANGO_FREERADIUS_BATCH_MAIL_SUBJECT

	DJANGO_FREERADIUS_BATCH_MAIL_MESSAGE

	DJANGO_FREERADIUS_BATCH_MAIL_SENDER

	Installation and configuration of Freeradius 3
	How to install freeradius 3

	Configuring Freeradius 3

	Radius Checks: is_active & valid_until

	Using Radius Checks for Authorization Information

	Debugging

	Customizing your configuration

	Management commands
	delete_old_radacct

	delete_old_postauth

	cleanup_stale_radacct

	deactivate_expired_users

	delete_old_users

	Importing users
	batch_add_users

	Using the admin interface

	CSV Format

	Imported users with hashed passwords

	Importing users with clear-text passwords

	Autogeneration of usernames and passwords

	Generating users
	prefix_add_users

	Adding from admin inteface

	Enforcing session limits
	Default groups

	Freeradius configuration

	Registration of new users
	Setup

	API endpoints

	Registration in openwisp-radius

	Social Login
	Setup

	Configure the social account application

	Captive page button example

	API Documentation
	API Token

	Accounting

	Authorize

	PostAuth

	Batch user creation

	Login (Obtain User Auth Token)

	How to extend django-freeradius
	Update Settings

	Extend models

	Extend admin

	Extend AppConfig

	Extend API views

	Contributing
	Setup

	Ensure test coverage does not decrease

	Follow style conventions (PEP8, isort, JSLint)

	Update the documentation

	Send pull request

	Motivations and Goals
	Motivations

	Project goals

Indices and tables

	Index

	Module Index

	Search Page

Setup

Create a virtual environment

Please use a python virtual environment [https://docs.python.org/3/library/venv.html].
It keeps everybody on the same page, helps reproducing bugs and resolving problems.

We highly suggest to use virtualenvwrapper, please refer to the official virtualenvwrapper installation page [http://virtualenvwrapper.readthedocs.io/en/latest/install.html] and come back here when ready to proceed.

create virtualenv
mkvirtualenv radius

Note

If you encounter an error like Python could not import the module virtualenvwrapper,
add VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3 and run source virtualenvwrapper.sh again :)

Install required system packages

Install packages required by Weasyprint for your OS:

	Linux [https://weasyprint.readthedocs.io/en/stable/install.html#linux]

	MacOS [https://weasyprint.readthedocs.io/en/stable/install.html#macos]

	Windows [https://weasyprint.readthedocs.io/en/stable/install.html#windows]

Install stable version from pypi

Install from pypi:

pip install django-freeradius

Install development version

Install tarball:

pip install https://github.com/openwisp/django-freeradius/tarball/master

Alternatively you can install via pip using git:

pip install -e git+git://github.com/openwisp/django-freeradius#egg=django-freeradius

If you want to contribute, install your cloned fork:

git clone git@github.com:<your_fork>/django-freeradius.git
cd django-freeradius
python setup.py develop

Setup (integrate in an existing django project)

In the django settings.py file of your project, do the following:

	add django_freeradius and django_filters to INSTALLED_APPS

	set DJANGO_FREERADIUS_API_TOKEN (see API Token
for more information):

INSTALLED_APPS = [
 # other apps
 'django_freeradius',
 'django_filters',
]

DJANGO_FREERADIUS_API_TOKEN = '<a-long-secret-value-of-your-choice>'

Add the URLs to your main urls.py:

urlpatterns = [
 # ... other urls in your project ...

 # django-freeradius urls
 # keep the namespace argument unchanged
 url(r'^', include('django_freeradius.urls', namespace='freeradius')),
]

Then run:

./manage.py migrate

Migrating an existing freeradius database

If you already have a freeradius 3 database with the default schema, you should
be able to use it with django-freeradius (and openwisp-radius) easily:

	first of all, back up your existing database;

	configure django to connect to your existing database;

	fake the first migration (which only replicates the default freeradius schema)
and then launch the rest of migrations normally, see the examples below to
see how to do this.

django-freeradius

./manage.py migrate --fake django_freeradius 0001_initial_freeradius
./manage.py migrate

openwisp-radius

In case you are using openwisp-radius [https://github.com/openwisp/openwisp-radius]:

./manage.py migrate --fake openwisp_radius 0001_initial_freeradius
./manage.py migrate

Installing for development

Install python3-dev and gcc:

sudo apt-get install python3-dev gcc

Install sqlite:

sudo apt-get install sqlite3 libsqlite3-dev libpq-dev

Install mysqlclient:

sudo apt-get install libmysqlclient-dev libssl-dev

Note

If you are on Debian 10 or 9 you may need to install default-libmysqlclient-dev instead

Install your forked repo:

git clone git://github.com/<your_username>/django-freeradius
cd django-freeradius/
python setup.py develop

Install test requirements:

pip install -r requirements-test.txt

Create database:

cd tests/
./manage.py migrate
./manage.py createsuperuser

Launch development server:

./manage.py runserver

You can access the admin interface at http://127.0.0.1:8000/admin/.

Run tests with:

./runtests.py

Troubleshooting

If you encounter any issue during installation, run:

pip install -r requirements.txt -r requirements-test.txt instead of pip install -r requirements-test.txt

instead of pip install -r requirements-test.txt

Automating management commands

Some management commands are necessary to enable certain
features and also facilitate database cleanup. In a
production environment, it is highly recommended to
automate the usage of these commands by using cron jobs.

Edit the crontab with:

crontab -e

Add and modify the following lines accordingly:

This command deletes RADIUS accounting sessions older than 365 days
30 04 * * * <virtualenv_path>/bin/python <full/path/to>/manage.py delete_old_radacct 365

This command deletes RADIUS post-auth logs older than 365 days
30 04 * * * <virtualenv_path>/bin/python <full/path/to>/manage.py delete_old_postauth 365

This command closes stale RADIUS sessions that have remained open for 15 days
30 04 * * * <virtualenv_path>/bin/python <full/path/to>/manage.py cleanup_stale_radacct 15

This command deactivates expired user accounts which were created temporarily
(eg: for en event) and have an expiration date set.
30 04 * * * <virtualenv_path>/bin/python <full/path/to>/manage.py deactivate_expired_users

This command deletes users that have expired (and should have
been deactivated by deactivate_expired_users) for more than
18 months (which is the default duration)
30 04 * * * <virtualenv_path>/bin/python <full/path/to>/manage.py delete_old_users

Be sure to replace <virtualenv_path> with the absolute path to the Python
virtual environment.

Also, change <full/path/to> to the directory where manage.py is.

To get the absolute path to manage.py when django-freeradius is
installed for development, navigate to the base directory of
the cloned fork. Then, run:

cd tests/
pwd

More information can be found at the
management commands page.

Available settings

DJANGO_FREERADIUS_EDITABLE_ACCOUNTING

Default: False

Whether radacct entries are editable from the django admin or not.

DJANGO_FREERADIUS_EDITABLE_POSTAUTH

Default: False

Whether postauth logs are editable from the django admin or not.

DJANGO_FREERADIUS_GROUPCHECK_ADMIN

Default: False

Direct editing of group checks items is disabled by default because
these can be edited through inline items in the Radius Group
admin (Freeradius > Groups).

This is done with the aim of simplifying the admin interface and avoid
overwhelming users with too many options.

If for some reason you need to enable direct editing of group checks
you can do so by setting this to True.

DJANGO_FREERADIUS_GROUPREPLY_ADMIN

Default: False

Direct editing of group reply items is disabled by default because
these can be edited through inline items in the Radius Group
admin (Freeradius > Groups).

This is done with the aim of simplifying the admin interface and avoid
overwhelming users with too many options.

If for some reason you need to enable direct editing of group replies
you can do so by setting this to True.

DJANGO_FREERADIUS_USERGROUP_ADMIN

Default: False

Direct editing of user group items (radusergroup) is disabled by default
because these can be edited through inline items in the User
admin (Users and Organizations > Users).

This is done with the aim of simplifying the admin interface and avoid
overwhelming users with too many options.

If for some reason you need to enable direct editing of user group items
you can do so by setting this to True.

DJANGO_FREERADIUS_DEFAULT_SECRET_FORMAT

Default: NT-Password

The default encryption format for storing radius check values.

DJANGO_FREERADIUS_DISABLED_SECRET_FORMATS

Default: []

A list of disabled encryption formats, by default all formats are
enabled in order to keep backward compatibility with legacy systems.

DJANGO_FREERADIUS_RADCHECK_SECRET_VALIDATORS

Default:

{'regexp_lowercase': '[a-z]+',
 'regexp_uppercase': '[A-Z]+',
 'regexp_number': '[0-9]+',
 'regexp_special': '[\!\%\-_+=\[\]\
 {\}\:\,\.\?\<\>\(\)\;]+'}

Regular expressions regulating the password validation;
by default the following character families are required:

	a lowercase character

	an uppercase character

	a number

	a special character

DJANGO_FREERADIUS_BATCH_DEFAULT_PASSWORD_LENGTH

Default: 8

The default password length of the auto generated passwords while
batch addition of users from the csv.

DJANGO_FREERADIUS_BATCH_DELETE_EXPIRED

Default: 18

It is the number of months after which the expired users are deleted.

DJANGO_FREERADIUS_BATCH_PDF_TEMPLATE

It is the template used to generate the pdf when users are being generated using the batch add users feature using the prefix.

The value should be the absolute path to the template of the pdf.

DJANGO_FREERADIUS_API_TOKEN

See API Token.

DJANGO_FREERADIUS_DISPOSABLE_RADIUS_USER_TOKEN

Default: True

Radius user tokens are used for authorizing users.

When this setting is True radius user tokens are deleted right after a successful
authorization is performed. This reduces the possibility of attackers reusing
the access tokens and posing as other users if they manage to intercept it somehow.

DJANGO_FREERADIUS_API_AUTHORIZE_REJECT

Default: False

Indicates wether the Authorize API view will return
{"control:Auth-Type": "Reject"} or not.

Rejecting an authorization request explicitly will prevent freeradius from
attempting to perform authorization with other mechanisms (eg: radius checks, LDAP, etc.).

When set to False, if an authorization request fails, the API will respond with
None, which will allow freeradius to keep attempting to authorize the request
with other freeradius modules.

Set this to True if you are performing authorization exclusively through the REST API.

DJANGO_FREERADIUS_API_ACCOUNTING_AUTO_GROUP

Default: True

When this setting is enabled, every accounting instance saved from the API will have its groupname attribute automatically filled in.
The value filled in will be the groupname of the RadiusUserGroup of the highest priority among the RadiusUserGroups related to the user with the username as in the accounting instance.
In the event there is no user in the database corresponding to the username in the accounting instance, the failure will be logged with info level but the accounting will be saved as usual.

DJANGO_FREERADIUS_EXTRA_NAS_TYPES

Default: tuple()

This setting can be used to add custom NAS types that can be used from the
admin interface when managing NAS instances.

For example, you want a custom NAS type called cisco, you would add
the following to your project settings.py:

DJANGO_FREERADIUS_EXTRA_NAS_TYPES = (
 ('cisco', 'Cisco Router'),
)

Sending emails to users

Emails can be sent to users whose usernames or passwords have been autogenerated. The content of these emails can be customized with the settings explained below.

DJANGO_FREERADIUS_BATCH_MAIL_SUBJECT

Default: Credentials

It is the subject of the mail to be sent to the users. Eg: Login Credentials.

DJANGO_FREERADIUS_BATCH_MAIL_MESSAGE

Default: username: {}, password: {}

The message should be a string in the format Your username is {} and password is {}.

The text could be anything but should have the format string operator {} for .format operations to work.

DJANGO_FREERADIUS_BATCH_MAIL_SENDER

Default: settings.DEFAULT_FROM_EMAIL

It is the sender email which is also to be configured in the SMTP settings.
The default sender email is a common setting from the Django core settings [https://docs.djangoproject.com/en/2.1/ref/settings/#default-from-email] under DEFAULT_FROM_EMAIL.
Currently, DEFAULT_FROM_EMAIL is set to to webmaster@localhost.

Installation and configuration of Freeradius 3

This guide explains how to install and configure freeradius 3 [http://freeradius.org/version3.html]
in order to make it work with django-freeradius [https://github.com/openwisp/django-freeradius/].

Note

The guide is written for debian based systems, other linux distributions can work as well but the
name of packages and files may be different.

How to install freeradius 3

First of all, become root:

sudo -s

Let’s add the PPA repository for the Freeradius 3.x stable branch:

Note

If you use a recent version of Debian like Stretch (9) or Ubuntu Bionic (18),
you should skip the following command and use the official repositories.

apt-add-repository ppa:freeradius/stable-3.0

Update the list of available packages:

apt update

These packages are always needed:

apt install freeradius freeradius-rest

If you use MySQL:

apt install freeradius-mysql

If you use PostgreSQL:

apt install freeradius-postgresql

Configuring Freeradius 3

For a complete reference on how to configure freeradius please read the
Freeradius wiki, configuration files [http://wiki.freeradius.org/config/Configuration-files]
and their configuration tutorial [http://wiki.freeradius.org/guide/HOWTO].

Note

The path to freeradius configuration could be different on your system.
This article use the /etc/freeradius/ directory that ships with recent
debian distributions and its derivatives

Refer to the mods-available documentation [http://networkradius.com/doc/3.0.10/raddb/mods-available/home.html]
for the available configuration values.

Enable the configured modules

First of all enable the sql, rest and sqlcounter modules:

ln -s /etc/freeradius/mods-available/sql /etc/freeradius/mods-enabled/sql
ln -s /etc/freeradius/mods-available/rest /etc/freeradius/mods-enabled/rest
ln -s /etc/freeradius/mods-available/sqlcounter /etc/freeradius/mods-enabled/sqlcounter

Configure the SQL module

Once you have configured properly an SQL server, e.g. PostgreSQL:, and you can
connect with a username and password edit the file /etc/freeradius/mods-available/sql
to configure Freeradius to use the relational database.

Change the configuration for driver, dialect, server, port, login, password, radius_db as you need to fit your SQL server configuration.

Refer to the sql module documentation [http://networkradius.com/doc/3.0.10/raddb/mods-available/sql.html] for the available configuration values.

Example configuration using the PostgreSQL database:

/etc/freeradius/mods-available/sql

driver = "rlm_sql_postgresql"
dialect = "postgresql"

Connection info:
server = "localhost"
port = 5432
login = "<user>"
password = "<password>"
radius_db = "radius"

Configure the SQL counters

The sqlcounter module is used to enforce session limits.

The mods-available/sqlcounter should look like the following:

/etc/freeradius/mods-available/sqlcounter

The dailycounter is included by default in the freeradius conf
sqlcounter dailycounter {
 sql_module_instance = sql
 dialect = ${modules.sql.dialect}

 counter_name = Daily-Session-Time
 check_name = Max-Daily-Session
 reply_name = Session-Timeout

 key = User-Name
 reset = daily

 $INCLUDE ${modconfdir}/sql/counter/${dialect}/${.:instance}.conf
}

The noresetcounter is included by default in the freeradius conf
sqlcounter noresetcounter {
 sql_module_instance = sql
 dialect = ${modules.sql.dialect}

 counter_name = Max-All-Session-Time
 check_name = Max-All-Session
 key = User-Name
 reset = never

 $INCLUDE ${modconfdir}/sql/counter/${dialect}/${.:instance}.conf
}

The dailybandwidthcounter is added for django-freeradius
sqlcounter dailybandwidthcounter {
 counter_name = Max-Daily-Session-Traffic
 check_name = Max-Daily-Session-Traffic
 sql_module_instance = sql
 key = 'User-Name'
 reset = daily
 query = "SELECT SUM(acctinputoctets + acctoutputoctets) \
 FROM radacct \
 WHERE UserName='%{${key}}' \
 AND UNIX_TIMESTAMP(acctstarttime) + acctsessiontime > '%%b'"
}

Note

If your freeradius installation fails to start with an error similar to:

/etc/raddb/sites-enabled/default[440]: Failed to find "dailycounter" as a module or policy.

We need enable the sqlcounter in a special way. The modules section
of radiusd.conf should look as shown below. This is because of a bug in freeradius [http://lists.freeradius.org/pipermail/freeradius-users/2015-February/075870.html].
This should be solved in a future release of freeradius.

/etc/freeradius/radiusd.conf
modules {
 # ..
 $INCLUDE mods-enabled
 $INCLUDE mods-available/sqlcounter
 # ..
}

Configure the REST module

Configure the rest module by editing the file /etc/freeradius/mods-enabled/rest,
substituting <url> with your django project’s URL, (for example, if you are
testing a development environment, the URL could be http://127.0.0.1:8000,
otherwise in production could be something like https://openwisp2.mydomain.org)-

Refer to the rest module documentation [http://networkradius.com/doc/3.0.10/raddb/mods-available/rest.html]
for the available configuration values.

/etc/freeradius/mods-enabled/rest

connect_uri = "<url>"

authorize {
 uri = "${..connect_uri}/api/v1/authorize/"
 method = 'post'
 body = 'json'
 data = '{"username": "%{User-Name}", "password": "%{User-Password}"}'
 tls = ${..tls}
}

this section can be left empty
authenticate {}

post-auth {
 uri = "${..connect_uri}/api/v1/postauth/"
 method = 'post'
 body = 'json'
 data = '{"username": "%{User-Name}", "password": "%{User-Password}", "reply": "%{reply:Packet-Type}", "called_station_id": "%{Called-Station-ID}", "calling_station_id": "%{Calling-Station-ID}"}'
 tls = ${..tls}
}

accounting {
 uri = "${..connect_uri}/api/v1/accounting/"
 method = 'post'
 body = 'json'
 data = '{"status_type": "%{Acct-Status-Type}", "session_id": "%{Acct-Session-Id}", "unique_id": "%{Acct-Unique-Session-Id}", "username": "%{User-Name}", "realm": "%{Realm}", "nas_ip_address": "%{NAS-IP-Address}", "nas_port_id": "%{NAS-Port}", "nas_port_type": "%{NAS-Port-Type}", "session_time": "%{Acct-Session-Time}", "authentication": "%{Acct-Authentic}", "input_octets": "%{Acct-Input-Octets}", "output_octets": "%{Acct-Output-Octets}", "called_station_id": "%{Called-Station-Id}", "calling_station_id": "%{Calling-Station-Id}", "terminate_cause": "%{Acct-Terminate-Cause}", "service_type": "%{Service-Type}", "framed_protocol": "%{Framed-Protocol}", "framed_ip_address": "%{Framed-IP-Address}"}'
 tls = ${..tls}
}

Configure the site

Configure the authorize, authenticate and postauth section
as follows, substituting the occurrences of <api_token> with the value
of DJANGO_FREERADIUS_API_TOKEN:

/etc/freeradius/sites-enabled/default

server default {

 api_token_header = "Authorization: Bearer <api_token>"

 authorize {
 update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest
 sql
 dailycounter
 noresetcounter
 dailybandwidthcounter
 }

 # this section can be left empty
 authenticate {}

 post-auth {
 update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest

 Post-Auth-Type REJECT {
 update control { &REST-HTTP-Header += "${....api_token_header}" }
 rest
 }
 }

 accounting {
 update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest
 }
}

Please also ensure that acct_unique is present in tge pre-accounting section:

preacct {
 # ...
 acct_unique
 # ...
}

Restart freeradius to make the configuration effective

Restart freeradius to load the new configuration:

service freeradius restart
alternatively if you are using systemd
systemctl restart freeradius

In case of errors you can run freeradius in debug mode [https://wiki.freeradius.org/guide/radiusd-X] by running
freeradius -X in order to find out the reason of the failure.

A common problem, especially during development and testing, is that the
django-freeradius application may not be running, in that case you can find
out how to run the django development server in the
Install for development section.

Also make sure that this server runs on the port specified in
/etc/freeradius/mods-enabled/rest.

You may also want to take a look at the Freeradius documentation [http://freeradius.org/doc/] for further information that is freeradius specific.

Reconfigure the development environment using PostgreSQL

You’ll have to reconfigure the development environment as well before being able
to use django-freeradius for managing the freeradius databases.

If you have installed for development, create a file tests/local_settings.py
and add the following code to configure the database:

django-freeradius/tests/local_settings.py
 DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': '<db_name>',
 'USER': '<db_user>',
 'PASSWORD': '<db_password>',
 'HOST': '127.0.0.1',
 'PORT': '5432'
 },
 }

Make sure the database by the name <db_name> is created and also the
role <db_user> with <db_password> as password.

Radius Checks: is_active & valid_until

Django-Freeradius provides the possibility to extend the freeradius
query in order to introduce is_active and valid_until checks.

An example using MySQL is:

/etc/freeradius/mods-config/sql/main/mysql/queries.conf
authorize_check_query = "SELECT id, username, attribute, value, op \
 FROM ${authcheck_table} \
 WHERE username = '%{SQL-User-Name}' \
 AND is_active = TRUE \
 AND valid_until >= CURDATE() \
 ORDER BY id"

Using Radius Checks for Authorization Information

Traditionally, when using an SQL backend with Freeradius, user authorization information such as User-Name and
“known good” [https://freeradius.org/radiusd/man/rlm_pap.html] password are stored using the radcheck
table provided by Freeradius’ default SQL schema. Django-Freeradius utilizes Freeradius’
rlm_rest [https://networkradius.com/doc/current/raddb/mods-available/rest.html] module in order to
take advantage of the built in user management and authentication capabilities of Django.
(See Configure the REST module and User authentication in Django [https://docs.djangoproject.com/en/dev/topics/auth/])

For existing Freeradius deployments or in cases where it is preferred to utilize Freeradius’ radcheck table for
storing user credentials it is possible to utilize rlm_sql [https://wiki.freeradius.org/modules/Rlm_sql]
in parallel with (or instead of) rlm_rest [https://networkradius.com/doc/current/raddb/mods-available/rest.html]
for authorization.

Note

Bypassing the Django-Freeradius’ REST API for authorization means you will have to manually create
Radius Check ‘password’ entries for each user you want to authenticate with Freeradius.

Password hashing

By default Django will use PBKDF2 [https://en.wikipedia.org/wiki/PBKDF2] to store all passwords in the database.
(See Password management in Django [https://docs.djangoproject.com/en/dev/topics/auth/passwords/)]).
The default password hashing and storage algorithms in Django are not compatible with those used by Freeradius.
Therefore, a default set of Freeradius compatible password storage methods have been provided for deployments that make use
of Radius Checks for user credentials.

	Cleartext-Password

	NT-Password

	LM-Password

	MD5-Password

	SMD5-Password

	SHA-Password

	SSHA-Password

	Crypt-Password

Note

Only the Crypt-Password hashing attribute is recommended for new entries as it makes
use of the sha512_crypt feature supported by most Unix/Linux operating systems.
(See passlib.hash [https://passlib.readthedocs.io/en/stable/lib/passlib.hash.html#active-unix-hashes])
The other password hashing algorithms have been provided for backward compatibility.

Configuration

To configure support for accessing user credentials with Radius Checks ensure
the authorize section of your site as follows contains the sql module:

/etc/freeradius/sites-available/default

authorize {
 # ...
 sql # <-- the sql module
 # ...
}

Now you can add new Radius Check entries with one of the
supported hashing/storage methods mentioned above.

Additional Password Formats

Freeradius supports additional password hashing algorithms which are listed in the Freeradius
rlm_pap [https://freeradius.org/radiusd/man/rlm_pap.html] documentation. If your existing
deployment makes use of one of these or you would like to request an addition to Django-Freeradius
please see the documentation section on Contributing.

Keep in mind that using Radius Checks for accessing user credentials is considered an edge case in Django-Freeradius.
Full compatibility with new and existing features is not guaranteed.

Debugging

In this section we will explain how to debug your freeradius instance.

Start freeradius in debug mode

When debugging we suggest you to open up a dedicated terminal window to run freeradius in debug mode:

we need to stop the main freeradius process first
service freeradius stop
alternatively if you are using systemd
systemctl stop freeradius
launch freeradius in debug mode
freeradius -X

Testing authentication and authorization

You can do this with radtest:

radtest <username> <password> <host> 10 <secret>
radtest admin admin localhost 10 testing123

A successful authentication will return similar output:

Sent Access-Request Id 215 from 0.0.0.0:34869 to 127.0.0.1:1812 length 75
 User-Name = "admin"
 User-Password = "admin"
 NAS-IP-Address = 127.0.0.1
 NAS-Port = 10
 Message-Authenticator = 0x00
 Cleartext-Password = "admin"
Received Access-Accept Id 215 from 127.0.0.1:1812 to 0.0.0.0:0 length 20

While an unsuccessful one will look like the following:

Sent Access-Request Id 85 from 0.0.0.0:51665 to 127.0.0.1:1812 length 73
 User-Name = "foo"
 User-Password = "bar"
 NAS-IP-Address = 127.0.0.1
 NAS-Port = 10
 Message-Authenticator = 0x00
 Cleartext-Password = "bar"
Received Access-Reject Id 85 from 127.0.0.1:1812 to 0.0.0.0:0 length 20
(0) -: Expected Access-Accept got Access-Reject

Alternatively, you can use radclient which allows more complex tests; in the following
example we show how to test an authentication request which includes Called-Station-ID
and Calling-Station-ID:

user="foo"
pass="bar"
called="00-11-22-33-44-55:localhost"
calling="00:11:22:33:44:55"
request="User-Name=$user,User-Password=$pass,Called-Station-ID=$called,Calling-Station-ID=$calling"
echo $request | radclient localhost auth testing123

Testing accounting

You can do this with radclient, but first of all you will have to create a text file
like the following one:

/tmp/accounting.txt

Acct-Session-Id = "35000006"
User-Name = "jim"
NAS-IP-Address = 172.16.64.91
NAS-Port = 1
NAS-Port-Type = Async
Acct-Status-Type = Interim-Update
Acct-Authentic = RADIUS
Service-Type = Login-User
Login-Service = Telnet
Login-IP-Host = 172.16.64.25
Acct-Delay-Time = 0
Acct-Session-Time = 261
Acct-Input-Octets = 9900909
Acct-Output-Octets = 10101010101
Called-Station-Id = 00-27-22-F3-FA-F1:hostname
Calling-Station-Id = 5c:7d:c1:72:a7:3b

Then you can call radclient:

radclient -f /tmp/accounting.txt -x 127.0.0.1 acct testing123

You should get the following output:

Sent Accounting-Request Id 83 from 0.0.0.0:51698 to 127.0.0.1:1813 length 154
 Acct-Session-Id = "35000006"
 User-Name = "jim"
 NAS-IP-Address = 172.16.64.91
 NAS-Port = 1
 NAS-Port-Type = Async
 Acct-Status-Type = Interim-Update
 Acct-Authentic = RADIUS
 Service-Type = Login-User
 Login-Service = Telnet
 Login-IP-Host = 172.16.64.25
 Acct-Delay-Time = 0
 Acct-Session-Time = 261
 Acct-Input-Octets = 9900909
 Acct-Output-Octets = 1511075509
 Called-Station-Id = "00-27-22-F3-FA-F1:hostname"
 Calling-Station-Id = "5c:7d:c1:72:a7:3b"
Received Accounting-Response Id 83 from 127.0.0.1:1813 to 0.0.0.0:0 length 20

Customizing your configuration

You can further customize your freeradius configuration and exploit the many features of freeradius but
you will need to test how your configuration plays with django-freeradius.

Management commands

These management commands are necessary for enabling certain features and
for database cleanup.

Example usage:

cd tests/
./manage.py <command> <args>

In this page we list the management commands currently available in django-freeradius.

delete_old_radacct

This command deletes RADIUS accounting sessions older than <days>.

./manage.py delete_old_radacct <days>

For example:

./manage.py delete_old_radacct 365

delete_old_postauth

This command deletes RADIUS post-auth logs older than <days>.

./manage.py delete_old_postauth <days>

For example:

./manage.py delete_old_postauth 365

cleanup_stale_radacct

This command closes stale RADIUS sessions that have remained open for
the number of specified <days>.

./manage.py cleanup_stale_radacct <days>

For example:

./manage.py cleanup_stale_radacct 15

deactivate_expired_users

Note

Find out more about this feature in its dedicated page

This command deactivates expired user accounts which were created temporarily
(eg: for en event) and have an expiration date set.

./manage.py deactivate_expired_users

delete_old_users

This command deletes users that have expired (and should have been deactivated by
deactivate_expired_users) for more than the specified <duration_in_months>.

./manage.py delete_old_users --older-than-months <duration_in_months>

Note that the default duration is set to 18 months.

Importing users

This feature can be used for importing users from a csv file. There are many features included in it such as:

	Importing users in batches: all of the users of a particular csv file would be stored in batches and can be retrieved/ deleted easily using the batch functions.

	Set an expiration date: Expiration date can be set for a batch after which the users would not able to authenticate to the RADIUS Server.

	Autogenerate usernames and passwords: The usernames and passwords are automatically generated if they aren’t provided in the csv file. Usernames are generated from the email address whereas passwords are generated randomly and their lengths can be customized.

	Passwords are accepted in both cleartext and hash formats from the CSV.

	Send mails to users whose passwords have been generated automatically.

It can be done using both a management command and the admin interface.

batch_add_users

This command imports users from a csv file. Usage is as shown below.

./manage.py batch_add_users --name <name_of_batch> \
 --file <filepath> \
 --expiration <expiration_date> \
 --password-length <password_length>

Note that the expiration and password-length are optional parameters which default to never and 8 respectively.

Using the admin interface

Selecting the CSV as the strategy and uploading the CSV file is all one will have to do to import the CSV file from the admin interface. It can be checked at /admin/radiusbatch/add.

It is important to take care of the following when importing users from the CSV.

CSV Format

The CSV shall be of the format:

username,password,email,firstname,lastname

Imported users with hashed passwords

The hashes are directly stored in the database if they are of the django hash format [https://docs.djangoproject.com/en/2.0/topics/auth/passwords/].

For example, a password myPassword123, hashed using salted SHA1 algorithm, will look like:

pbkdf2_sha256$100000$cKdP39chT3pW$2EtVk4Hhm1V65GNfYAA5AHj0uyD60f2CmqumqiB/gRk=

So a full CSV line containing that password would be:

username,pbkdf2_sha256$100000$cKdP39chT3pW$2EtVk4Hhm1V65GNfYAA5AHj0uyD60f2CmqumqiB/gRk=,email@email.com,firstname,lastname

Importing users with clear-text passwords

Clear-text passwords must be flagged with the prefix cleartext$.

For example, if we want to use the password qwerty,
we must use: cleartext$qwerty.

Autogeneration of usernames and passwords

Email is the only mandatory field of the CSV file.

Other fields like username and password will be auto-generated if omitted.

Batch mail settings

Emails can be sent to users whose usernames or passwords have been autogenerated and contents of these emails can be customized too. Here are
some defined settings for doing that:

	DJANGO_FREERADIUS_BATCH_MAIL_SUBJECT

	DJANGO_FREERADIUS_BATCH_MAIL_MESSAGE

	DJANGO_FREERADIUS_BATCH_MAIL_SENDER

Generating users

Many a times, a network admin might need to generate temporary users for events etc. This feature can be used for generating users by specifying a prefix and the number of users to be generated. There are many features included in it such as:

	Generating users in batches: all of the users of a particular prefix would be stored in batches and can be retrieved/ deleted easily using the batch functions.

	Set an expiration date: Expiration date can be set for a batch after which the users would not able to authenticate to the RADIUS Server.

	PDF: Get the usernames and passwords generated outputted into a PDF.

This can be accomplished from both the admin interface and the management command.

prefix_add_users

This command generates users whose usernames start with a particular prefix. Usage is as shown below.

./manage.py prefix_add_users --name <name_of_batch> \
 --prefix <prefix> \
 --n <number_of_users>
 --expiration <expiration_date> \
 --password-length <password_length>

Note that the expiration and password-length are optional parameters which default to never and 8 respectively.

Adding from admin inteface

At the url /admin/django_freeradius/radiusbatch/add one can directly generate users using the prefix and the number of users. A PDF can be downloaded immediately after the users have been generated.

Enforcing session limits

The default freeradius schema does not include a table where groups are stored,
but django-freeradius adds a model called RadiusGroup and alters the default
freeradius schema to add some optional foreign-keys from other tables like:

	radgroupcheck

	radgroupreply

	radusergroup

These foreign keys make it easier to automate many synchronization and integrity
checks between the RadiusGroup table and its related tables but they are
not strictly mandatory from the database point of view:
their value can be NULL and their presence and validation is handled at
application level, this makes it easy to use existing freeradius databases.

For each group, checks and replies can be specified directly in the edit page
of a Radius Group (admin > groups > add group or change group).

Default groups

Some groups are created automatically by django-freeradius during the initial
migrations:

	users: this is the deafult group which limits users sessions
to 3 hours and 300 MB (daily)

	power-users: this group does not have any check, therefore users who
are members of this group won’t be limited in any way

You can customize the checks and the replies of these groups, as well as create
new groups according to your needs and preferences.

Note on the default group: keep in mind that the group flagged as
default will by automatically assigned to new users, it cannot be deleted nor
it can be flagged as non-default: to set another group as default simply check
that group as the deafult one, save and django-freeradius will remove the
default flag from the old default group.

Freeradius configuration

Ensure the sqlcounter module is enabled and configured as described in
Configure the SQL counters.

Registration of new users

Django-freeradius does not ship logic related to registration of new users
because there are many good django packages that are aimed at solving that solution.

We recommend using django-rest-auth [https://github.com/Tivix/django-rest-auth]
which provides registration of new users via REST API so you can implement
registration and password reset directly from your captive page.

Setup

Install django-rest-auth and django-allauth:

pip install django-rest-auth django-allauth

Add the following to your settings.py:

INSTALLED_APPS = [
 # ... other apps ..
 # apps needed for registration
 'rest_framework.authtoken',
 'rest_auth',
 'django.contrib.sites',
 'allauth',
 'allauth.account',
 'rest_auth.registration',
]

SITE_ID = 1

Add the rest-auth urls to your main urls.py:

urlpatterns = [
 # ...
 url(r'^api/v1/rest-auth/', include('rest_auth.urls')),
 url(r'^api/v1/registration/', include('rest_auth.registration.urls'))
]

API endpoints

Refer to the django-rest-auth documentation regarding its API endpoints [https://django-rest-auth.readthedocs.io/en/latest/api_endpoints.html].

Registration in openwisp-radius

In openwisp-radius [https://github.com/openwisp/openwisp-radius] the dependencies
and required settings are the same but the additional registration URL route
does not need to be added to urls.py because a default route with the built-in
registration view is shipped. This is done because the registration needs to
take into account multi-tenancy, that is, the system must know which organization
the user has to be assigned to when the registration is completed.

In openwisp-radius, the registration URL is:

/api/v1/registration/<organization_slug>/

Social Login

Social login is supported by generating an additional temporary token right
after users perform the social sign-in, the user is then redirected to the
captive page with two querystring parameters: username and token.

The captive page must recognize these two parameters and automatically perform
the submit action of the login form: username should obviously used for the
username field, while token should be used for the password field.

The internal REST API of django-freeradius will recognize the token and authorize
the user.

This kind of implementation allows to implement the social login with any captive
portal which already supports the RADIUS protocol because it’s totally transparent
for it, that is, the captive portal doesn’t even know the user is signing-in with
a social network.

Setup

Install django-allauth:

pip install django-allauth

Ensure your settings.py looks like the following (we will show how to
configure of the facebook social provider):

INSTALLED_APPS = [
 # ... other apps ..
 # apps needed for social login
 'rest_framework.authtoken',
 'django.contrib.sites',
 'allauth',
 'allauth.account',
 'allauth.socialaccount',
 # showing facebook as an example
 # to configure social login with other social networks
 # refer to the django-allauth documentation
 'allauth.socialaccount.providers.facebook',
]

SITE_ID = 1

showing facebook as an example
to configure social login with other social networks
refer to the django-allauth documentation
SOCIALACCOUNT_PROVIDERS = {
 'facebook': {
 'METHOD': 'oauth2',
 'SCOPE': ['email', 'public_profile'],
 'AUTH_PARAMS': {'auth_type': 'reauthenticate'},
 'INIT_PARAMS': {'cookie': True},
 'FIELDS': [
 'id',
 'email',
 'name',
 'first_name',
 'last_name',
 'verified',
],
 'VERIFIED_EMAIL': True,
 }
}

Ensure your main urls.py contains the allauth.urls:

urlpatterns = [
 # .. other urls ...
 url(r'^accounts/', include('allauth.urls')),
]

Configure the social account application

Refer to the django-allauth documentation to find out how to complete the
configuration of a sample facebook login app [https://django-allauth.readthedocs.io/en/latest/providers.html#facebook].

Captive page button example

Following the previous example configuration with facebook, in your captive page
you will need an HTML button similar to the ones in the following examples.

django-freeradius

<a href="https://openwisp2.mywifiproject.com/accounts/facebook/login/?next=%2Ffreeradius%2Fsocial-login%2F%3Fcp%3Dhttps%3A%2F%2Fcaptivepage.mywifiproject.com%2F%26last%3D"
 class="button">Log in with Facebook

Substitute openwisp2.mywifiproject.com and captivepage.mywifiproject.com
with the hostname of your django-freeradius instance and your captive page respectively.

openwisp-radius

This example works for openwisp-radius [https://github.com/openwisp/openwisp-radius]
(multitenant version of django-freeradius), which needs the slug of the
organization to assign the new user to the right organization:

<a href="https://openwisp2.mywifiproject.com/accounts/facebook/login/?next=%2Ffreeradius%2Fsocial-login%2Fdefault%2F%3Fcp%3Dhttps%3A%2F%2Fcaptivepage.mywifiproject.com%2F%26last%3D"
 class="button">Log in with Facebook

Substitute openwisp2.mywifiproject.com, captivepage.mywifiproject.com
and default with the hostname of your openwisp-radius instance, your captive
page and the organization slug respectively.

API Documentation

django-freeradius provides an API that can be used by freeradius to perform
the following operations:

	Authorize

	Accounting

	Post Auth

The API also provides other features that can be useful to perform integrations
with third-party software:

	Batch User Creation

	Login (Obtain User Auth Token)

API Token

Only requests containing the right API token will able to talk to the API
endpoints.

Remember to set API token of your instance by setting
DJANGO_FREERADIUS_API_TOKEN in your django settings.py.

It is highly recommended that you use a hard to guess value, longer than 15 characters
containing both letters and numbers. Eg:

DJANGO_FREERADIUS_API_TOKEN = "165f9a790787fc38e5cc12c1640db2300648d9a2"

HTTP clients must send this token, either in the form of a bearer token [https://swagger.io/docs/specification/authentication/bearer-authentication/]
or in the form of a query string parameter as shown below.

	Bearer token (recommended):

curl -X POST http://localhost:8000/api/v1/authorize/ \
 -H "Authorization: Bearer <token>" \
 -d "username=<username>&password=<password>"

	Querystring:

curl -X POST http://localhost:8000/api/v1/authorize/?token=<token> \
 -d "username=<username>&password=<password>"

Requests which contain an invalid token will receive a 403 HTTP error.

For information on how to configure FreeRADIUS to send the bearer token, see
Configure the REST module.

Accounting

/api/v1/accounting/

GET

Returns a list of accounting objects

GET /api/v1/accounting/

[
 {
 "called_station_id": "00-27-22-F3-FA-F1:hostname",
 "nas_port_type": "Async",
 "groupname": null,
 "id": 1,
 "realm": "",
 "terminate_cause": "User_Request",
 "nas_ip_address": "172.16.64.91",
 "authentication": "RADIUS",
 "stop_time": null,
 "nas_port_id": "1",
 "service_type": "Login-User",
 "username": "admin",
 "update_time": null,
 "connection_info_stop": null,
 "start_time": "2018-03-10T14:44:17.234035+01:00",
 "output_octets": 1513075509,
 "calling_station_id": "5c:7d:c1:72:a7:3b",
 "input_octets": 9900909,
 "interval": null,
 "session_time": 261,
 "session_id": "35000006",
 "connection_info_start": null,
 "framed_protocol": "test",
 "framed_ip_address": "127.0.0.1",
 "unique_id": "75058e50"
 }
]

POST

Add or update accounting information (start, interim-update, stop);
does not return any JSON response so that freeradius will avoid
processing the response without generating warnings

	Param

	Description

	session_id

	Session ID

	unique_id

	Accounting unique ID

	username

	Username

	groupname

	Group name

	realm

	Realm

	nas_ip_address

	NAS IP address

	nas_port_id

	NAS port ID

	nas_port_type

	NAS port type

	start_time

	Start time

	update_time

	Update time

	stop_time

	Stop time

	interval

	Interval

	session_time

	Session Time

	authentication

	Authentication

	connection_info_start

	Connection Info Start

	connection_info_stop

	Connection Info Stop

	input_octets

	Input Octets

	output_octets

	Output Octets

	called_station_id

	Called station ID

	calling_station_id

	Calling station ID

	terminate_cause

	Termination Cause

	service_type

	Service Type

	framed_protocol

	Framed protocol

	framed_ip_address

	framed IP address

Pagination

Pagination is provided using a Link header pagination.
https://developer.github.com/v3/guides/traversing-with-pagination/

{

 link: <http://testserver/api/v1/accounting/?page=2&page_size=1>; rel=\"next\",
 <http://testserver/api/v1/accounting/?page=3&page_size=1>; rel=\"last\"

}

Note: Default page size is 10, which can be overridden using the page_size parameter.

Filters

The JSON objects returned using the GET endpoint can be filtered/queried using specific parameters.

	Filter Parameters

	Description

	username

	Username

	called_station_id

	Called Station ID

	calling_station_id

	Calling Station ID

	start_time

	Start time (greater or equal to)

	stop_time

	Stop time (less or equal to)

	is_open

	If stop_time is null

Authorize

/api/v1/authorize/

Responds to only POST, used for authorizing a given username and password.

POST /api/v1/authorize/ HTTP/1.1 username=testuser&password=testpassword

	Param

	Description

	username

	Username for the given user

	password

	Password for the given user

See also DJANGO_FREERADIUS_API_AUTHORIZE_REJECT.

PostAuth

/api/v1/postauth/

Sets the response data to None in order to instruct
FreeRADIUS to avoid processing the response body.

Responds only to POST.

Batch user creation

/api/v1/batch/

Note

This API endpoint allows to use the features described in Importing users
and Generating users.

Responds only to POST, used to save a RadiusBatch instance.
It returns the information of the batch operation and the list of the users generated.
It is possible to generate the users of the RadiusBatch with two different strategies: csv or prefix.

The csv method needs the following parameters:

	Param

	Description

	name

	Name of the operation

	strategy

	“csv”

	csvfile

	file with the users

	expiration_date

	date of expiration of the users

These others are for the prefix method:

	Param

	Description

	name

	name of the operation

	strategy

	prefix

	prefix

	prefix for the generation of users

	number_of_users

	number of users

	expiration_date

	date of expiration of the users

Login (Obtain User Auth Token)

/api/v1/account/token/

Note

This endpoint does not require the sending of the API Token
described in the beginning of this document.

Responds only to POST, this endpoint is enabled only
if rest_framework.authtoken is in settings.INSTALLED_APPS
(which is optional).

Returns the user access token, which can be used to authenticate
the user via the freeradius authorization mechanism.

Parameters:

	Param

	Description

	username

	string

	password

	string

How to extend django-freeradius

django-freeeadius provieds set of models, admin and API classes which can be imported, extended and hence customized by third party apps.

Update Settings

Update the settings to trigger the swapper:

In settings.py of your project

DJANGO_FREERADIUS_RADIUSREPLY_MODEL = "my_radius_app.RadiusReply"
DJANGO_FREERADIUS_RADIUSGROUPREPLY_MODEL = "my_radius_app.RadiusGroupReply"
DJANGO_FREERADIUS_RADIUSCHECK_MODEL = "my_radius_app.RadiusCheck"
DJANGO_FREERADIUS_RADIUSGROUPCHECK_MODEL = "my_radius_app.RadiusGroupCheck"
DJANGO_FREERADIUS_RADIUSACCOUNTING_MODEL = "my_radius_app.RadiusAccounting"
DJANGO_FREERADIUS_NAS_MODEL = "my_radius_app.Nas"
DJANGO_FREERADIUS_RADIUSUSERGROUP_MODEL = "my_radius_app.RadiusUserGroup"
DJANGO_FREERADIUS_RADIUSPOSTAUTHENTICATION_MODEL = "my_radius_app.RadiusPostAuth"

where my_radius_app is name of your app extending django_freeradius

Extend models

Apart from extending implemented models, django_freeradius also provides flexibility to extend abstract class models from django-freeradius.base.models.

Example:

In my_radius_app/models.py

from django.db import models
from django_freeradius.base.models import AbstractRadiusCheck

class RadiusCheck(AbstractRadiusCheck):
 # modify/extend the default behavour here
 custom_field = models.TextField()

Similary, you can extend other model classes from django_freeradius.base.models.

Extend admin

Similar to models, abstract admin classes from django_freeradius.base.admin can also be extended to avoid duplicate code.

In my_radius_app/admin.py

from django.contrib import admin
from .models import RadiusCheck
from django_freeradius.base.admin import AbstractRadiusAccountingAdmin

class RadiusCheckAdmin(AbstractRadiusCheckAdmin):
 model = RadiusCheck
 # modify/extend default behaviour here
 fields = AbstractRadiusCheckAdmin.fields + ['custom_field']
 list_display = AbstractRadiusCheckAdmin.list_display + ['custom_field']

admin.site.register(RadiusCheck, RadiusCheckAdmin)

Note

For a real world implementation of extending django-freeradius.base.admin, refer openswisp-radius.admin [https://github.com/openwisp/openwisp-radius/blob/master/openwisp_radius/admin.py]

Extend AppConfig

You can also extend AppConfig class from django_freeradius.apps.DjangoFreeradiusConfig and provide support for your signals and hooks.

In my_radius_app/apps.py

from django.conf import settings
from django_freeradius.apps import DjangoFreeradiusConfig
from django.core.exceptions import ImproperlyConfigured

API_TOKEN = settings.DJANGO_FREERADIUS_API_TOKEN

class MyRadiusAppConfig(DjangoFreeradiusConfig):
 name = 'my_radius_app'

 # Overiding DjangoFreeradiusConfig.check_settings
 # just for the sake of example, we add a check which ensures the
 # DJANGO_FREERADIUS_API_TOKEN settings is defined and is at
 # least 20 characters long.
 def check_settings(self):
 if API_TOKEN and len(API_TOKEN) < 20 or not API_TOKEN:
 def check_settings(self):
 if API_TOKEN and len(API_TOKEN) < 20 or not API_TOKEN:
 raise ImproperlyConfigured(
 'Security error: DJANGO_FREERADIUS_API_TOKEN is either not set or is less than 20 characters.')

Extend API views

You can also extend API views from django_freeradius.api.views to your suit your models.

In my_radius_app/api/views.py

from django_freeradius.api.views import AuthorizeView, AuthorizeView

class RadiusTokenAuthentication(TokenAuthentication):
 # modify/extend default behaviour here
 pass

class RadiusAuthorizeView(AuthorizeView):
 # use your modified authentication class
 authentication_classes = (RadiusTokenAuthentication,)

authorize = RadiusAuthorizeView.as_view()

Note

For a real world implementation of extending django-freeradius.api, refer openwisp-radius.api [https://github.com/openwisp/openwisp-radius/tree/master/openwisp_radius/api]

Contributing

Thank you for taking the time to contribute to django-freeradius.

Follow these guidelines to speed up the process.

Table of Contents:

	Contributing

	Setup

	Ensure test coverage does not decrease

	Follow style conventions (PEP8, isort, JSLint)

	Update the documentation

	Send pull request

Note

In order to have your contribution accepted faster, please read the
OpenWISP contributing guidelines [http://openwisp.io/docs/developer/contributing.html] and make sure to follow its guidelines.

Setup

Once you have chosen an issue to work on, setup your machine for development [https://django-freeradius.readthedocs.io/en/latest/general/setup.html#installing-for-development]

Ensure test coverage does not decrease

First of all, install the test requirements:

workon radius # activate virtualenv
pip install --no-cache-dir -U -r requirements-test.txt

When you introduce changes, ensure test coverage is not decreased with:

coverage run --source=django_freeradius runtests.py

Follow style conventions (PEP8, isort, JSLint)

First of all, install the test requirements:

workon radius # activate virtualenv
pip install --no-cache-dir -U -r requirements-test.txt
npm install -g jslint

Before committing your work check that your changes are not breaking the style conventions with:

./runflake8
./runisort
jslint ./django_freeradius/static/django-freeradius/js/*.js

For more information, please see:

	PEP8: Style Guide for Python Code [https://www.python.org/dev/peps/pep-0008/]

	isort: a python utility / library to sort imports [https://github.com/timothycrosley/isort]

Update the documentation

If you introduce new features or change existing documented behavior,
please remember to update the documentation!

The documentation is located in the /docs directory
of the repository.

To do work on the docs, proceed with the following steps:

workon radius # activate virtualenv
pip install sphinx
cd docs
make html

Send pull request

Now is time to push your changes to github and open a pull request [https://github.com/openwisp/django-freeradius/pulls]!

Motivations and Goals

In this page we explain the goals of this project and the motivations
that led us on this path.

Motivations

The old version of OpenWISP (which we call OpenWISP 1) had a freeradius module
which provided several interesting features:

	user registration

	account verification with several methods

	user management

	password reset

	basic general statistics

	basic user account page with user’s statistics

But it also had important problems:

	it was not written with automated testing in mind, so there was a lot of code which
the maintainers didn’t want to touch because of fear of breaking existing features

	it was not written with an international user-base in mind, it contained a great
deal of code which was specific to a single country (Italy)

	it was hard to extend, even small changes required changing its core code

	the user management code was implemented in a different way compared to
other openwisp1 modules, which added a lot of maintenance overhead

	it used outdated dependencies which over time became vulnerable and were hard to replace

	it did not perform hashing of user passwords

	the documentation did not explain how to properly install and configure the software

Similar problems were affecting other modules of OpenWISP 1, that’s why
over time we got convinced the best thing was to start fresh using best practices
since the start.

Project goals

The main aim of this project is to offer a web application and documentation
that helps people from all over the world to implement a wifi network
that can use freeradius to authenticate its users, either via captive portal
authentication or WPA2 enterprise, BUT this doesn’t mean we want to
lock the software to this use case: we want to keep the software generic enough
so it can be useful to implement other use cases that are related to
networking connectivity and network management; just keep in mind our main
aim if you plan to contribute to django-freeradius please.

Other goals are listed below:

	replace the user management system of OpenWISP 1 by providing a similar feature set

	provide a web interface to manage a freeradius database

	provide abstract models and admin classes that can be imported, extended and reused in third party apps

	provide ways to extend the logic of django-freeradius without changing its core

	ensure the code is written with an international audience in mind

	maintain a very good automated test suite

	reuse the django user management logic which is very robust and stable

	ensure passwords are hashed with strong algorithms and freeradius can
authorize/authenticate using these hashes (that’s why we recommend using the
rml_rest freeradius module with the REST API of django-freeradius)

	integrate django-freeradius with the rest of the openwisp2 ecosystem

	provide good documentation on how to install the project, configure it with
freeradius and use its most important features

Index

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 django-freeradius

 		
 Setup

 		
 Create a virtual environment

 		
 Install required system packages

 		
 Install stable version from pypi

 		
 Install development version

 		
 Setup (integrate in an existing django project)

 		
 Migrating an existing freeradius database

 		
 django-freeradius

 		
 openwisp-radius

 		
 Installing for development

 		
 Troubleshooting

 		
 Automating management commands

 		
 Available settings

 		
 DJANGO_FREERADIUS_EDITABLE_ACCOUNTING

 		
 DJANGO_FREERADIUS_EDITABLE_POSTAUTH

 		
 DJANGO_FREERADIUS_GROUPCHECK_ADMIN

 		
 DJANGO_FREERADIUS_GROUPREPLY_ADMIN

 		
 DJANGO_FREERADIUS_USERGROUP_ADMIN

 		
 DJANGO_FREERADIUS_DEFAULT_SECRET_FORMAT

 		
 DJANGO_FREERADIUS_DISABLED_SECRET_FORMATS

 		
 DJANGO_FREERADIUS_RADCHECK_SECRET_VALIDATORS

 		
 DJANGO_FREERADIUS_BATCH_DEFAULT_PASSWORD_LENGTH

 		
 DJANGO_FREERADIUS_BATCH_DELETE_EXPIRED

 		
 DJANGO_FREERADIUS_BATCH_PDF_TEMPLATE

 		
 DJANGO_FREERADIUS_API_TOKEN

 		
 DJANGO_FREERADIUS_DISPOSABLE_RADIUS_USER_TOKEN

 		
 DJANGO_FREERADIUS_API_AUTHORIZE_REJECT

 		
 DJANGO_FREERADIUS_API_ACCOUNTING_AUTO_GROUP

 		
 DJANGO_FREERADIUS_EXTRA_NAS_TYPES

 		
 Sending emails to users

 		
 DJANGO_FREERADIUS_BATCH_MAIL_SUBJECT

 		
 DJANGO_FREERADIUS_BATCH_MAIL_MESSAGE

 		
 DJANGO_FREERADIUS_BATCH_MAIL_SENDER

 		
 Installation and configuration of Freeradius 3

 		
 How to install freeradius 3

 		
 Configuring Freeradius 3

 		
 Enable the configured modules

 		
 Configure the SQL module

 		
 Configure the SQL counters

 		
 Configure the REST module

 		
 Configure the site

 		
 Restart freeradius to make the configuration effective

 		
 Reconfigure the development environment using PostgreSQL

 		
 Radius Checks: is_active & valid_until

 		
 Using Radius Checks for Authorization Information

 		
 Password hashing

 		
 Configuration

 		
 Additional Password Formats

 		
 Debugging

 		
 Start freeradius in debug mode

 		
 Testing authentication and authorization

 		
 Testing accounting

 		
 Customizing your configuration

 		
 Management commands

 		
 delete_old_radacct

 		
 delete_old_postauth

 		
 cleanup_stale_radacct

 		
 deactivate_expired_users

 		
 delete_old_users

 		
 Importing users

 		
 batch_add_users

 		
 Using the admin interface

 		
 CSV Format

 		
 Imported users with hashed passwords

 		
 Importing users with clear-text passwords

 		
 Autogeneration of usernames and passwords

 		
 Batch mail settings

 		
 Generating users

 		
 prefix_add_users

 		
 Adding from admin inteface

 		
 Enforcing session limits

 		
 Default groups

 		
 Freeradius configuration

 		
 Registration of new users

 		
 Setup

 		
 API endpoints

 		
 Registration in openwisp-radius

 		
 Social Login

 		
 Setup

 		
 Configure the social account application

 		
 Captive page button example

 		
 django-freeradius

 		
 openwisp-radius

 		
 API Documentation

 		
 API Token

 		
 Accounting

 		
 GET

 		
 POST

 		
 Authorize

 		
 PostAuth

 		
 Batch user creation

 		
 Login (Obtain User Auth Token)

 		
 How to extend django-freeradius

 		
 Update Settings

 		
 Extend models

 		
 Extend admin

 		
 Extend AppConfig

 		
 Extend API views

 		
 Contributing

 		
 Setup

 		
 Ensure test coverage does not decrease

 		
 Follow style conventions (PEP8, isort, JSLint)

 		
 Update the documentation

 		
 Send pull request

 		
 Motivations and Goals

 		
 Motivations

 		
 Project goals

